Preparation and characterization of tetrachlorocobaltates(II) of *a*,ω-alkylenediammonium. Magnetic and thermal properties. Crystal structure of [NH₃(CH₂)₅NH₃]CoCl₄

J. J. CRIADO,^a A. JIMÉNEZ-SÁNCHEZ,^b F. H. CANO,^c R. SÁEZ-PUCHE^d AND E. RODRÍGUEZ-FERNÁNDEZ^a*

^aDepartamento de Química Inorgánica, Plaza de la Merced s/n, E-37008 Salamanca, Spain, ^bDepartamento de Química Orgánica, Plaza de la Merced s/n, E-37008 Salamanca, Spain, ^cInstituto de Quimico-Fisica, Rocasolano CSIC, Departamento de Cristalografia, Serrano 119, E-28006 Madrid, Spain, and ^dDepartamento de Química Inorgánica, Universidad Complutense, E-28002 Madrid, Spain. E-mail: erodri@gugu.usal.es

(Received 18 February 1999; accepted 22 April 1999)

Abstract

Tetrachlorocobaltates(II) of diprotonated α, ω -diaminoalkanes with the formula $[NH_3(CH_2)_nNH_3]CoCl_4$, where n = 5 (cadaverine; 1,5-pentanediammonium tetrachlorocobaltate), 8 (1,8-octanediammonium tetrachlorocobaltate) and 10 (1,10-decanediammonium tetrachlorocobaltate), were prepared. The compounds were studied by mass spectrometry, FT-IR and visible spectroscopy, magnetic susceptibility techniques and thermal analysis. The compounds contain the tetrahedral tetrachlorocobaltate(II) ion and the corresponding diprotonated diamine (cadaverine, 1,8octamethylenediamine and 1,10-decamethylenediamine). The compound corresponding to cadaverine crystallizes in the monoclinic space group $P2_1/c$, with lattice parameters a = 7.1633 (7), b = 15.940 (3), c =11.137 (2) Å, $\beta = 98.44$ (1)° and Z = 4. Its crystal structure contains slightly distorted tetrahedral CoCl^{2–} ions: the largest difference in Co-Cl bond lengths is 0.029 Å and the largest difference in Cl-Co-Cl angles is 7.76°. The compound also contains diprotonated cadaverine ions. An extensive hydrogen-bonding network connects these ions. The slightly positive deviations of the magnetic susceptibility from the Curie–Weiss law are in agreement with the ${}^{4}A_{2}$ ground state for the tetrachlorocobaltate anion. The compounds with eight and ten C atoms show phase transitions in the solid state and a greater complexity is observed in their differential scanning calorimetry curves. Unfortunately, no suitable single crystals of these could be obtained.

1. Introduction

The tetrachlorocobaltate(II) ion has a tetrahedral geometry, although this may be distorted to D_{2d} symmetry. The distortion is evident from a splitting of the bands in the visible and IR spectra (Marcotrigiano *et al.*, 1976, 1977).

Compounds of tetrahedral cobalt(II) have been of continuing interest during the last two decades for several reasons (Morón *et al.*, 1991). In a tetrahedral environment the ground state of cobalt(II) will be ${}^{4}A_{2}$

and axial distortions will split this state into two Kramers doublets. Most energy studies on tetrahedral cobalt(II) compounds reveal two characteristics in common: the first is the relatively large zero-field splitting effect (ZSE; Carlin, 1981, 1985) and the second is that the magnetic exchange in tetrahedral cobalt(II) compounds for most of the compounds investigated is found to be ordered at temperatures below 1 K (Carlin, 1986). Recently, however, new tetrahedral cobalt(II) compounds have been reported showing ferro- or antiferromagnetic interactions, with critical temperatures above 4.2 K, and even as high as 10 K in the case of Na₂CoP₂O₇ (Sanz et al., 1999; Chen et al., 1994). This

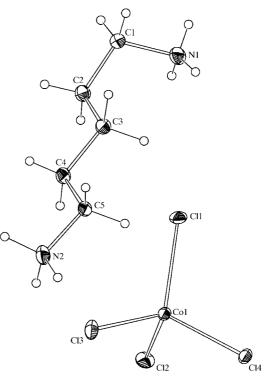


Fig. 1. Displacement ellipsoid plot of [NH₃(CH₂)₅NH₃]CoCl₄ with the atom-labelling scheme. H atoms have been assigned arbitrary radii for clarity.

^{© 1999} International Union of Crystallography Printed in Great Britain – all rights reserved

work reports on the magnetic behaviour of different tetrahedral cobalt(II) compounds.

Some diamines, such as 1,4-diaminobutane (putrescine) or 1,5-diaminopentane (cadaverine), have important biological functions in living beings, in which they mainly exist as diprotonated species (Ganem, 1982). If the hydrocarbon chain is sufficiently long, the $[NH_3(CH_2)_n NH_3]^{2+}$ cation will have lipid-like properties. The ammonium groups are held in place by hydrogen-bonding to the Cl atoms of $[CoCl_4]^{2-}$. The thermal behaviour of these compounds shows chainmelting transitions, defined by rapid motion of one or more gauche bonds up and down the hydrocarbon chains. The minor transitions are associated with dynamic rotational disordering of the chains. These compounds provide the basis for developing systems which combine bilayer characteristics within a crystalline lattice (Needham et al., 1984).

2. Experimental

The CoCl₂.6H₂O and the highly purified diamines used were obtained from Fluka. The title compounds were prepared in accordance with a previously proposed method (Bañares *et al.*, 1984) and were recrystallized from aqueous solutions. The cobalt content was determined by complexometric titration using edta and murexide as an indicator. The chloride content was determined by the Mohr method (Bañares *et al.*, 1984). A Perkin–Elmer 2400 analyzer was used to determine the carbon, nitrogen and hydrogen present.

[NH₃(CH₂)₅NH₃]CoCl₄, cadaverine compound. Found: N, 9.3; C, 19.6; H, 5.3; Cl, 46.2; Co, 19.2%. C₅H₁₆Cl₄CoN₂ requires N, 9.19; C, 19.69; H, 5.29; Cl, 46.50; Co, 19.33%. FT-IR (cm⁻¹): 3165*s*, 3120*s*, 3080*sh*, 2920*s*, 2840*s*, 1575*s*, 1490*s*, 1070*m*, 1050*m*, 1030*m*, 760*m*, 280*m*. MS-FAB+ (*z*/*m*): 268.0 [*M*-HCl]⁺.

[NH₃(CH₂)₈NH₃]CoCl₄, 1,8-octamethylenediamine compound. Found: N, 8.2; C, 27.6; H, 6.3; Cl, 41.5; Co, 16.8%. C₈H₂₂Cl₄CoN₂ requires N, 8.07; C, 27.69; H, 6.39; Cl, 40.87; Co, 16.98%. FT-IR (cm⁻¹): 3180*sh*, 3120*s*, 3060*sh*, 2920*s*, 2840*s*, 1590*s*, 1565*m*, 1470*s*, 1090*m*, 1060*m*, 1040*m*, 810*m*, 760*m*, 295*m*, 285*sh*. MS-FAB+ (*z*/*m*): 310.0 [*M*-HCl]⁺.

 $[\rm NH_3(\rm CH_2)_{10}\rm NH_3]\rm CoCl_4, 1,10-decamethylenediamine compound. Found: N, 7.5; C, 32.0; H, 6.7; Cl, 37.5; Co, 15.8\%. C_5\rm H_{26}\rm Cl_4\rm CoN_2$ requires N, 7.47; C, 32.02; H, 6.99; Cl, 37.81; Co, 15.71%. FT-IR (cm⁻¹): 3180sh, 3120s, 3040sh, 2920s, 2840s, 1590s, 1560m, 1480m, 1070m, 1050m, 1030m, 830m, 810m, 290(broad). MS-FAB+ (z/m): 338.1 [*M*-HCl]⁺.

The thermal decomposition of the different samples was monitored by thermogravimetric analysis (TGA), using a Perkin-Elmer TGS-2 thermobalance, and by differential scanning calorimetry (DSC) on a Perkin-Elmer DSC-4 apparatus. Sample masses for thermal studies were 5-7 mg. IR spectra were recorded on a Perkin-Elmer 1700 instrument using KBr pellets or Nujol mulls on a CsI window (for the far-IR region). X-ray powder data were obtained on a Siemens D500 diffractometer using nickel-filtered Cu $K\alpha$ radiation. X-ray diffraction data were collected at room temperature on a four-circle Seifert XRD 3000 diffractometer using Cu K α radiation ($\lambda = 1.5418$ Å), a graphite monochromator and ω -2 θ scans. The lattice parameters were refined from 54 reflections ($2 < \theta < 35^{\circ}$). Crystal data and selected details of the structure determinations are given in Table 1. The structure was solved by direct methods (SIR92; Altomare et al., 1994) and refined with anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms

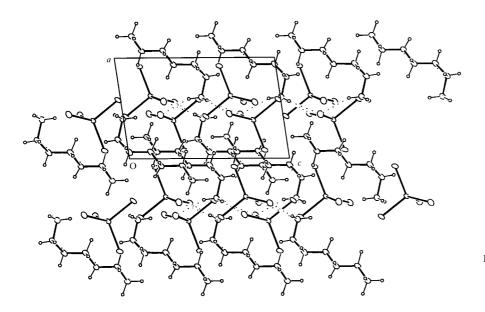


Fig. 2. Projection along the b axis of [NH₃(CH₂)₅NH₃]CoCl₄, showing a two-dimensional network structure formed by hydrogen bonds.

[XRAY80 (Stewart *et al.*, 1990), SHELXL93 (Sheldrick, 1993)]. Empirical absorption corrections (range 0.073–0.203) were applied using *DIFABS* (Walker & Stuart, 1983). H atoms were located using the program *HSEARCH* (Fallos & Martinez-Ripoll, 1990) and refined with isotropic displacement parameters. The complete lists of atomic coordinates, and bond lengths and angles have been deposited as supplementary material.[†]

Magnetic susceptibility measurements were performed on a Squid Quantum Design XL magnetometer at 500 Oe in the 300–2 K temperature range. The instrument was calibrated with metallic palladium as standard and all data were corrected for ionic diamagnetism (Mulay & Boudreaux, 1976).

3. Crystal structure

The crystal structure of the cadaverine compound shows the tetrachlorocobaltate anion with only slight deviations from a tetrahedron, in agreement with the unsplit Co-Cl stretching band. The tetrahedra are interconnected via hydrogen bonds to diprotonated cadaverine. The C–C and C–N bonds in the $C_5H_{16}N_2^{2+}$ cation are similar in length to the same bonds in $[C_5H_{16}N_2]_2Cl_2[PtCl_6]$ (Delafontaine *et al.*, 1987). There are four possible hydrogen bonds, ranging from ammonium to Cl atoms (Table 2). Consideration of $H \cdot \cdot \cdot Cl$ distances allows the hydrogen bonds to be classified as medium to very weak (see Figs. 1 and 2, and Tables 1 and 3). In our compound with cadaverine, the largest difference in Co–Cl bond lengths is 0.029 Å and the largest difference in Cl-Co-Cl angles is 7.76°, indicating a small distortion from ideal tetrahedral symmetry. These values are similar to those determined for the compound with 1,3-propanodiamine: 0.024 Å and 6.3°, respectively (Ning et al., 1992). The tetrachlorocobaltate(II) ion is found to have a fairly undistorted tetrahedral geometry in [NH₂(CH₃)₂]₂CoCl₄ (Williams et al., 1992) and $[N(CH_3)_4]_2CoCl_4$ (Wiesner et al., 1964). For the compound with ethylenediamine, the differences are 0.041 Å and 23.0°, respectively (Smith & Stratton, 1977). No studies on crystal structures of the compounds with eight and ten C atoms were carried out because it was not possible to crystallize them.

4. Results and discussion

The IR spectra were consistent with the diprotonated diamine. The Co–Cl stretching vibration appears close to 300 cm⁻¹ for tetrahedral $CoCl_4^{2-}$ (Sabatini & Sacconi, 1964). A loss of symmetry leads to a more or less pronounced splitting in this band, as in ethylene-

Table 1. Experimental details

Crystal data	
Chemical formula	$[(NH_3)_2C_5H_{10}].CoCl_4$
Chemical formula weight	304.93
Cell setting	Monoclinic
Space group	$P2_1/c$
a (Å)	7.1633 (7)
b (Å)	15.940 (3)
c (Å)	11.137 (2)
β (°)	98.44 (1)
$V(\dot{A}^3)$	1257.9 (3)
	4
-	
D_x (Mg m ⁻³)	1.610
Radiation type	Cu <i>Kα</i>
Wavelength (Å)	1.5418
No. of reflections for cell	54
parameters	
θ range (°)	4.88-66.12
$\mu \ (\mathrm{mm}^{-1})$	18.178
Temperature (K)	293 (2)
F(000)	620
Crystal form	Rectangular
Crystal size (mm)	$0.47 \times 0.27 \times 0.13$
Crystal colour	Blue
erystar colour	Dide
Data collection	
Diffractometer	Seifert XRD 3000 four-circle
Data collection method	$2\theta - \omega$ scans
T_{\min}	0.073
T _{max}	0.203
No. of measured reflections	2147
No. of independent reflections	2147
No. of observed reflections	1586
Criterion for observed reflections	$I > 2\sigma(I)$
$\theta_{\rm max}$ (°)	66.12
Range of h, k, l	$-8 \rightarrow h \rightarrow 8$
Range of h, k, l	$\begin{array}{c} -8 \rightarrow h \rightarrow 8\\ 0 \rightarrow k \rightarrow 19 \end{array}$
Range of h, k, l	
	$0 \rightarrow k \rightarrow 19$
No. of standard reflections	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \end{array}$
	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \end{array}$
No. of standard reflections Intensity decay (%)	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \end{array}$
No. of standard reflections Intensity decay (%) Refinement	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible
No. of standard reflections Intensity decay (%) Refinement Refinement on	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2}
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S No. of reflections used in	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S No. of reflections used in refinement	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S No. of reflections used in refinement No. of parameters used	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S No. of reflections used in refinement	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ S No. of reflections used in refinement No. of parameters used	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{a}^{2}) + (0.123P)^{2}],$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme (A (σ)	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{a}^{2}) + (0.123P)^{2}],$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme (A (σ)	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \\ \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_c^2)/3 \end{array}$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme (A (σ)	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³)	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables for Crystallography
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max} \Delta \rho_{max}$ (e Å ⁻³) $\Delta \rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables for Crystallography
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables for Crystallography (1992, Vol. C)
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$0 \rightarrow k \rightarrow 19$ $0 \rightarrow l \rightarrow 13$ 2 Negligible F^{2} 0.063 0.167 1.011 2147 157 H-atom parameters refined independently $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.123P)^{2}],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ -0.111 0.85 -0.79 None International Tables for Crystallography (1992, Vol. C) SIR92 (Altomare et al.,
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_o^2)/3 \\ -0.111 \\ 0.85 \\ -0.79 \\ \text{None} \\ \text{International Tables} \\ for Crystallography \\ (1992, \text{Vol. C}) \end{array}$ $\begin{array}{l} SIR92 \text{ (Altomare et al., 1994)} \end{array}$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_c^2)/3 \\ -0.111 \\ 0.85 \\ -0.79 \\ \text{None} \\ \hline \\ International Tables \\ for Crystallography \\ (1992, \text{Vol. C}) \end{array}$ $\begin{array}{l} SIR92 \text{ (Altomare et al., 1994)} \\ SHELXL93 \text{ (Sheldrick, } \end{array}$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \\ \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_c^2)/3 \\ -0.111 \\ 0.85 \\ -0.79 \\ \text{None} \\ \hline International Tables \\ for Crystallography \\ (1992, \text{Vol. C}) \\ \end{array}$ $\begin{array}{l} SIR92 \text{ (Altomare et al., 1994)} \\ SHELXL93 \text{ (Sheldrick, 1993), XRAY80 (Stewart et al., 1994)} \\ \end{array}$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2 > 2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors Computer programs Structure solution	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \\ \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined} \\ \text{independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_c^2)/3 \\ -0.111 \\ 0.85 \\ -0.79 \\ \text{None} \\ \hline \text{International Tables} \\ for Crystallography \\ (1992, \text{Vol. C}) \\ \end{array}$ $\begin{array}{l} SIR92 \text{ (Altomare et al., } \\ 1994 \text{)} \\ SHELXL93 \text{ (Sheldrick, } \\ 1993 \text{)}, XRAY80 \text{ (Stewart et al., } \\ 1990 \text{)} \end{array}$
No. of standard reflections Intensity decay (%) Refinement Refinement on $R[F^2>2\sigma(F^2)]$ $wR(F^2)$ <i>S</i> No. of reflections used in refinement No. of parameters used H-atom treatment Weighting scheme $(\Delta/\sigma)_{max}$ $\Delta\rho_{max}$ (e Å ⁻³) $\Delta\rho_{min}$ (e Å ⁻³) Extinction method Source of atomic scattering factors	$\begin{array}{l} 0 \rightarrow k \rightarrow 19 \\ 0 \rightarrow l \rightarrow 13 \\ 2 \\ \text{Negligible} \end{array}$ $\begin{array}{l} F^2 \\ 0.063 \\ 0.167 \\ 1.011 \\ 2147 \end{array}$ $\begin{array}{l} 157 \\ \text{H-atom parameters refined} \\ \text{independently} \\ w = 1/[\sigma^2(F_o^2) + (0.123P)^2], \\ \text{where } P = (F_o^2 + 2F_c^2)/3 \\ -0.111 \\ 0.85 \\ -0.79 \\ \text{None} \\ \textbf{International Tables} \\ for Crystallography \\ (1992, \text{Vol. C}) \end{array}$ $\begin{array}{l} SIR92 \text{ (Altomare et al., 1994)} \\ SHELXL93 \text{ (Sheldrick, 1993), XRAY80 (Stewart et al., 1994)} \end{array}$

[†] Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM0020). Services for accessing these data are described at the back of the journal.

2.283 (2)	N2-C5	1.492 (9)
2.293 (2)	C1-C2	1.492 (11)
2.271 (2)	C2-C3	1.514 (11)
2.264 (2)	C3-C4	1.510 (10)
1.495 (10)	C4-C5	1.489 (10)
107.97 (8)	C2-C1-N1	112.2 (7)
112.44 (7)	C1-C2-C3	115.0 (7)
113.55 (8)	C4-C3-C2	112.7 (6)
105.79 (7)	C5-C4-C3	112.3 (6)
109.84 (8)	C4-C5-N2	111.9 (6)
106.96 (8)		
	2.293 (2) 2.271 (2) 2.264 (2) 1.495 (10) 107.97 (8) 112.44 (7) 113.55 (8) 105.79 (7) 109.84 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2. Selected geometric parameters (\mathring{A}^2, \circ)

diammonium tetrachlorocobaltate (Smith & Stratton, 1977) or morpholinium tetrachlorocuprates (Marcotrigiano *et al.*, 1976). The compounds corresponding to eight and ten C atoms show a slight splitting for the Co-Cl stretching band. In the cadaverine compound, only a band at 280 cm⁻¹ appears, corresponding to a tetrahedral $CoCl_4^{2-}$ anion. The solid-state visible spectra are consistent with this geometry (Bañares *et al.*, 1984). The MS-FAB+ spectra of the compounds show peaks corresponding to the $[M-HCl]^+$ ions. The observed isotope pattern for this ion closely matches the calculated spectrum (Fig. 3).

Figs. 4 and 5 show the temperature dependence of the magnetic susceptibility of the tetrahedrally coordinated cobalt(II) compounds. In all cases the susceptibility obeys the Curie–Weiss law over a wide temperature range. The calculated magnetic moments are given in

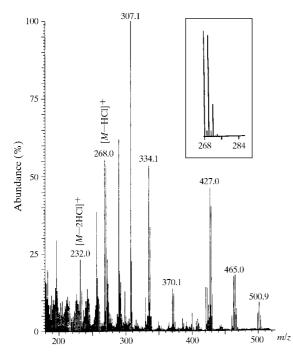


Fig. 3. FAB+/MS spectrum of $[NH_3(CH_2)_5NH_3]CoCl_4$. Inset: calculated isotopic mass distribution for the $[M-HCl]^+$ ion.

Table 3. Hydrogen-bonding geometry (Å, $^{\circ}$)

$D - \mathbf{H} \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1\!-\!H111\!\cdots\!Cl2^{i} \\ N1\!-\!H112\!\cdots\!Cl1^{ii} \\ N1\!-\!H113\!\cdots\!Cl2^{iii} \\ N2\!-\!H223\!\cdots\!Cl3^{iv} \end{array}$	0.92 (7)	2.42 (6)	3.29 (1)	155
	1.00 (10)	2.3 (1)	3.29 (1)	157
	0.79 (13)	2.5 (1)	3.21 (1)	155
	1.01	2.31	3.25 (1)	152

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) x, y, 1 + z; (iii) 1 + x, y, z.

Table 4. Magnetic moments (μ) and Weiss temperatures obtained for the tetrahedral cobalt(II) complexes

Compound	μ/μ_B	θ (K)	Temperature range (K)
C5H16Cl4CoN2	4.57	-3.62	300-3
C ₈ H ₂₂ Cl ₄ CoN ₂	4.63	-2.70	300-5
C10H26Cl4CoN2	4.43	-4.06	300-10

Table 5. DSC data for the three compounds

Melting point in closed capillary. Endothermic peaks: heating rate $10 \text{ K} \min^{-1}$ under a nitrogen atmosphere.

Compound	Melting point (K)	Heating scan	$\Delta H (\text{kJ mol}^{-1}) [T (\text{K})]$
C5H16Cl4CoN2	495 ± 2	1st	73.1 [497]
		2nd	77.5 [496]
C ₈ H ₂₂ Cl ₄ CoN ₂	483 ± 2	1st	9.8 [418]; 1.0 [436];
			1.6 [462]; 19.3 [486]
		2nd	9.9 [403]; 12.5 [478];
			11.2 [486]
		3rd	15.9 [486]
		4th	18.3 [486]
C10H26Cl4CoN2	482 ± 2	1st	6.5 [364]; 15.4 [413];
			7.1 [447]; 3.8 [483]
		2nd	6.1 [357]; 9.0 [442],
			5.0 [482]
		3rd	6.1 [357]; 8.6 [441];
			4.8 [482]

Table 4, which shows the values ranging from $4.43\mu_B$ for the compound with ten C atoms to $4.63\mu_B$ for the compound with eight C atoms, in agreement with the value obtained for other tetrahedral cobalt(II) compounds. The slightly positive deviations from Curie-Weiss behaviour below 5 K (Fig. 5 inset) and the negative values of the Weiss constants (Table 4) are mainly due to two different factors. First, the deviation can be attributed to the depopulation of the higher level, associated with the ${}^{4}A_{2}$ ground state and giving rise to a decrease in both susceptibility and magnetic moment values, as can be clearly observed in the inset of Fig. 4 showing the χT versus T plot. Second, the operativity of antiferromagnetic interactions can be discarded down to 2 K, which is the lower temperature of measurements, since there is no maximum in the χ versus T plots, and the deviations from linearity of the Curie-Weiss law and the negative values of the Weiss constant are due to the zero-field splitting effect associated with the ${}^{4}A_{2}$ ground state of tetrahedral cobalt(II) compounds.

The maximum *d*-spacings in the X-ray powder diffractograms for compounds with eight and ten C atoms are 10.5 and 12.6 Å, respectively. These spacings may be related to the structure of such systems, which consist of layers of CoCl₄²⁻ sandwiched between hydrocarbon layers formed by the long paraffin chains of α, ω -alkanediammonium groups. Similar spacings are found in analogous tetrachlorozincates of diamines with eight and ten C chains (Busico & Vacatello, 1981). The expected two-dimensional antiferromagnetic interactions for these layered materials should be very weak, since the $CoCl_4^{2-}$ tetrahedra are well separated (Fig. 2). The pathway through the superexchange interactions between the nearest neighbour should be of the type $Co-Cl \cdot \cdot \cdot Cl-Co$, with bond angles very different from 180° implying poor overlap between the orbitals involved in the exchange and consequently a very small exchange integral. This reasoning justifies the proposed absence of interactions down to 2 K. Moreover, our preliminary results (Saez-Puche & Porcher, 1999) in the simulation of the susceptibility of these compounds using the so-called simple overlap model (SOM; Malta, 1982) have successfully reproduced the paramagnetic susceptibility across the whole temperature range of measurements, without invoking the presence of any magnetic interactions.

The thermograms (tg) of the compounds obtained are similar and show no appreciable loss of weight up to 623-673 K. Above this temperature a weight loss occurs, corresponding to sublimation of diamine hydrochloride, identified in the corresponding IR spectrum. All the thermograms show a short plateau concordant with the calculated weight for CoCl₂. Finally, at higher temperatures in air all thermograms indicate the formation of Co₃O₄, identified by X-ray powder diffraction.

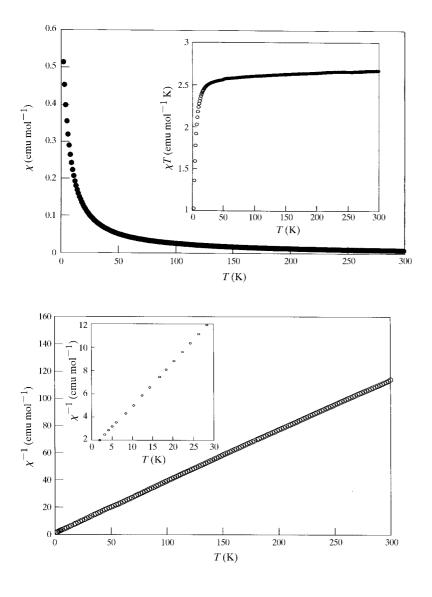


Fig. 4. Variation in molar susceptibility (χ) with temperature for a sample of [NH₃(CH₂)₈NH₃]CoCl₄. The inset shows the plot of χT *versus T*.

Fig. 5. Temperature dependence of the reciprocal susceptibility (χ^{-1}) for [NH₃(CH₂)₅NH₃]CoCl₄. The inset shows an enlargement of the 0–30 K region.

In differential scanning calorimetry (DSC) the existence of an endotherm at \sim 473 K was noted; this coincides with the melting point measured in a closed capillary tube (Table 5).

The thermal behaviour of freshly prepared compounds is slightly different from that of thermally treated ones (Table 5). In particular, the compounds with eight or ten C atoms show different endothermic processes in successive DSC recordings. Only these compounds show phase transitions in the solid state and greater complexity is observed in the DSC curves, with the appearance of a series of endotherms before the melting point is reached. These peaks are attributed to conformational changes in the polymethylene chains to give forms that are less favoured in terms of energy, but which are generated by a small input of energy. Such transitions have been reported in other alkane diammonium tetrachlorometallates (Busico *et al.*, 1981).

Thanks are due to Nicholas Skinner for revising the English version of the manuscript.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–441.
- Bañares, M. A., Angoso, A. & Rodriguez, E. (1984). *Polyhedron*, **3**, 363–364.
- Busico, V., Gaudio, A. & Vacatello, V. (1981). *Gazz. Chim. Ital.* **111**, 235–237.
- Busico, V. & Vacatello, M. (1981). Gazz. Chim. Ital. 111, 13-17.
- Carlin, R. L. (1981). J. Appl. Phys. 52, 1993–1997.
- Carlin, R. L. (1985). Science, 227, 1291-1295.
- Carlin, R. L. (1986). *Magnetochemistry*, pp. 19–30. New York: Springer Verlag.

- Chen, J., Jones, P. H., Natarajan, S., Hursthouse, N. B. & Thomas, J. M. (1994). *Angew. Chem. Int. Ed. Eng.* **33**, 639– 640.
- Delafontaine, J. M., Toffoli, P., Khodadad, P., Rodier, N. & Julien, R. (1987). Acta Cryst. C43, 1048–1050.
- Fallos, J. & Martinez-Ripoll, M. (1990). *HSEARCH Program.* Instituto Rocasolana-CSIC, Serrano 119, Madrid, Spain.
- Ganem, B. (1982). Acc. Chem. Res. 15, 290-298.
- Malta, O. L. (1982). Chem. Phys. Lett. 88, 353-356.
- Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1976). *Inorg. Chem.* **15**, 2333–2336.
- Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1977). J. Inorg. Nucl. Chem. 39, 2097–2098.
- Morón, M. C., Palacios, F., Pons, J., Casabó, J. & Carlin, R. L. (1991). Eur. J. Solid State Inorg. Chem. 28, 431–439.
- Mulay, L. N. & Boudreaux, E. A. (1976). *Theory and Applications of Molecular Paramagnetism*, pp. 494–496. New York: J. Wiley.
- Needham, G. F., Willett, R. D. & Franzen, H. F. (1984). J. Phys. Chem. 88, 674–680.
- Ning, G., Yong-Hua, L., Guang-Fu, Z. & Shi-Quan, S. (1992). Acta Cryst. C48, 542–543.
- Sabatini, A. & Sacconi, L. (1964). J. Am. Chem. Soc. 86, 17–20.
- Saez-Puche, R. & Porcher, P. (1999). In preparation.
- Sanz, F., Ruíz-Valero, C., Rojo, J., Parada, C. & Saez-Puche, R. (1999). J. Solid State Chem. 145, 604–611.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Smith, H. W. & Stratton, W. J. (1977). Inorg. Chem. 16, 1640– 1645.
- Stewart, J. M., Kundell, F. A. & Baldwin, J. C. (1990). *The X-ray80 System*. Computer Science Center, University of Maryland. College Pard, Maryland, USA.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Wiesner, J. R., Srivastava, R. C., Kennard, C. H. L., DiVaira, M. & Lingafelter, E. C. (1964). Acta Cryst. 23, 565–566.
- Williams, I. D., Brown, P. W. & Taylor, N. J. (1992). Acta Cryst. C48, 263–266.